Sulphur–Nitrogen Compounds. Part 5.¹ The Oxidation of N-Aryl-N-(arylsulphonyl)hydroxylamines: Preparation of N-Aryl-NO-bis(arylsulphonyl)hydroxylamines

By John D. Birchall and Christopher Glidewell,* Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST

Oxidation of the compounds $R^{1}(R^{2}SO_{2})NOH$ (R^{1} , $R^{2} = Ph$, Ph; p-CIC₆H₄, Ph; p-CIC₆H₄, p-MeOC₆H₄; or Ph, Me) yields NNO-trisubstituted hydroxylamines R¹(R²SO₂)NOSO₂R², together with R¹NO₂ and R¹NN(O)R¹. When R¹, R² = Ph, Ph; p-ClC₆H₄, Ph; or Ph, Me the oxidation proceeds *via* rhe aminyl oxide radicals R¹(R²SO₂)NO: when R¹, R² = p-ClC₆H₄, p-MeOC₆H₄ the radical (p-ClC₆H₄)₂NO is also formed. Apparently pure samples of $(RSO_2)_2NOSO_2R$ (R = $p-XC_6H_4$; X = H, Me, CI, or F) contain low concentrations of the radicals (RSO₂)₂NO'. Carbon-13 n.m.r. spectroscopy shows that the compounds (RSO₂)₂NH, (RSO₂)₂NOH, and (RSO₂)₃N contain only one type of R, but that (RSO₂)₂NOSO₂R contain two types of R and hence are NNO-trisubstituted hydroxylamines rather than amine oxides. Similarly Ph(PhSO₂)NOH contains two phenyl sites but Ph(PhSO₂)NOSO₂Ph contains three.

OXIDATION of diarylhydroxylamines leads² to diarylaminyl oxides R2NO whereas oxidation of bis(arylsulphonyl)hydroxylamines leads 3 to tris(arylsulphonyl)hydroxylamines, (RSO₂)₂NOSO₂R. Accordingly, we have investigated the oxidation of some mixed hydroxylamines $R^{1}(R^{2}SO_{2})NOH$, and report here the results of this work, together with those of a ¹³C n.m.r. study of some arylsulphonylhydroxylamines and related species.

EXPERIMENTAL

Literature methods were used for the preparation of the compounds p-XC₆H₄SO₂Na (X = H, Me, Cl, F, or OMe),³ $(p-XC_6H_4SO_2)_2NOH,^3$ $(p-XC_6H_4SO_2)_2NOSO_2C_6H_4X-p,^3$ (p-MeC₆H₄SO₂)₃N,⁴ Ph(PhSO₂)NOH,⁵ and Ph(PhCO)NOH.⁶

¹ Part 4, J. D. Birchall and C. Glidewell, Inorg. Chim. Acta, 1977, 25, L67.

² A. R. Forrester, J. M. Hay, and R. H. Thomson, 'Organic Chemistry of Stable Free Radicals,' Academic Press, New York, 1968.

³ J. D. Birchall and C. Glidewell, J.C.S. Dalton, 1977, 10.

The compounds R¹(R²SO₂)NOH were prepared by reaction ⁵ of R¹NHOH with R²SO₂Cl: microanalytical data, yields, and melting points are in Table 1.

E.s.r. spectra were recorded using a Decca X-3 instrument, ¹³C n.m.r. spectra on a Varian CFT-20 spectrometer.

Oxidation of N-Aryl-N-arylsulphonylhydroxylamines.---(a) Ph(PhSO₂)NOH. The hydroxylamine (2.49 g, 10.0 mmol) was stirred during 24 h with an excess of PbO₂ in benzene (100 cm³); the mixture was then centrifuged, and the solution reduced to small volume. Light petroleum (200 cm³) was added and the mixture vigorously shaken; the petroleum layer was carefully decanted off, and fiiltered to yield the N-phenyl-NO-bis(phenylsulphonyl)hydroxylamine crude which was recrystallised from benzene (0.80 g, 2.1 mmol, 42%), m.p. 110-112 °C (Found: C, 55.9; H, 4.2; N, 3.6. Calc. for C₁₈H₁₅NO₅S₂: C, 55.5; H, 3.9; N, 3.6%). Extrac-

 T. A. J. W. Wajer, H. W. Geluk, J. B. F. N. Engberts, and T. J. de Boer, *Rec. Trav. chim.*, 1970, 89, 696.
 E. Bamberger, K. Blaskopf, and A. Landau, *Ber.*, 1919, 52, 1116.

⁴ H. Stetter and H. Hansmann, Ber., 1957, 90, 2728.

tion of the residual oil with hot ethanol afforded azoxybenzene (0.10 g, 0.52 mmol, 10.4%), m.p. 33-34 °C (lit.,7 36 °C). Nitrobenzene was detected mass spectrometrically. Identical products were obtained when the oxidant was $Pb[O_2CMe]_4$ in CH_2Cl_2 , but the following reagents failed to oxidise the hydroxylamine: AgO-C₆H₆, MnO₂-C₆H₆, and HNO₃-MeCO₂H. With aqueous HNO₂ as oxidant, the sole product (60%) was p-ONC₆H₄(PhSO₂)NOH (Found: C, 52.0; H, 3.5; N, 10.1. Calc. for $C_{12}H_{10}N_2O_4S$: C, 51.8; H, 3.6; N, 10.1%), m.p. 85–86 °C, m/e 278.036 23 u [u = $(10^3 N_{\rm A})^{-1} \ \rm kg] \ ({}^{12}\rm C_{12}{}^1\rm H_{10}{}^{14}\rm N_2{}^{16}\rm O_4{}^{32}\rm S \ requires \ 278.036 \ 12 \ u).$ Hydrogen n.m.r. spectrum: δ 6.30 and 7.65 (A₂B₂, 4 H), 6.80 (s, 5 H), and 9.85 (s, 1 H) p.p.m.

(b) p-ClC₆H₄(PhSO₂)NOH. The hydroxylamine (0.53 g, 1.87 mmol) was stirred with an excess of PbO₂ in benzene (100 cm³) during 24 h. Work-up as in (a) yielded p-ClC₆H₄-(PhSO₂)NOSO₂Ph (0.20 g, 0.47 mmol, 51%), m.p. 98-99 °C

-The hydroxylamine (1.80 g, 9.63 mmol) was oxidised with PbO₂ as described previously: work-up afforded 0.9 g of a deep red solid (0.4 g), m.p. 93--94 °C (Found: C, 39.9; H, 4.5; N, 5.7. Calc. for C₈H₁₁NO₅S₂: C, 36.2; H, 4.2; N, 5.3%). Hydrogen-1 n.m.r. spectrum: δ 3.05 (s, 3 H), 3.32 (s, 3 H), and 6.9-7.2 (m, 5 H) p.p.m. The residue contained both PhNO₂ and PhNN(O)Ph.

Oxidation of N-Benzoyl-N-phenylhydroxylamine.-The hydroxylamine (2.13 g, 10 mmol) was oxidised with PbO₂ in benzene: work-up yielded 0.9 g of crude product, together with a residual oil containing PhNO₂ and PhNN(O)-Ph. A portion (250 mg) of the crude product was chromatographed on SiO₂ (thf-hexane) to yield Ph(PhCO)NOCOPh (50 mg) (Found: C, 74.9; H, 4.9; N, 4.8. Calc. for C₂₀H₁₅NO₃: C, 75.7; H, 4.8; N, 4.4%), and PhCONHPh (120 mg), m.p. 161-162 °C (lit., ¹⁰ 161 °C).

N.M.R. Spectra.-Integrated proton spectra (CDCl₃

Microanalytical data, yields, and melting	g points for new R ¹ (R ² SO ₂)NOH			
Analysis (%)				
Found	Calc			

TABLE 1

$\mathbf{R^{1}}$		Found			Calc.				
	\mathbf{R}^{2}	C	H	N	Ċ	H	N	Yield (%)	M.p. (θ _c /°C)
Ph	p-MeC _e H _e	59.6	5.1	5.1	59.3	5.0	5.3	75	121-124
b-MeC _€ H₄	p-MeC H	59.9	5.4	5.2	60.6	5.5	5.1	63	126 - 128
b-ClCaH	Ph	51.0	3.7	5.2	50.8	3.6	4.9	55	101-103
b-CIC,H	p-MeOC _a H _a	50.2	3.9	4.2	49.8	3.9	4.5	52	9799
Ph 🌷	Me °	45.3	5.1	7.3	44.9	4.9	7.5	51	9193

(Found: C, 50.4; H, 4.4; N, 2.9. Calc. for C₁₈H₁₄ClNO₅S₂: C, 51.1; H, 3.1; N, 3.3%). Extraction of the residual oil with CS_2 (100 cm³) yielded 4-chloronitrobenzene (0.10 g, 0.64 mmol, 68%), m.p. and mixed m.p. 81-82 °C. Further extraction with hot ethanol (100 cm³) afforded 4,4'-dichloroazoxybenzene (0.05 g, 0.19 mmol, 20%), m.p. 156-157 °C (lit.,8 158 °C).

(c) p-ClC₆H₄(p-MeOC₆H₄SO₂)NOH. Oxidation (1.50 g, 4.79 mmol) as above with PbO, yielded 4-chloronitrobenzene, 4,4'-dichloroazoxybenzene, and a deep red solid (0.80 g), m.p. 95-97 °C (Found: C, 48.5; H, 3.5; N, 5.3. Calc. for $C_{20}H_{18}CINO_7S_2$: C, 49.6; H, 3.8; N, 2.9%). Chromatography [SiO₂, 30% tetrahydrofuran (thf) in hexane] of a sample (170 mg) yielded 45 mg of p-ClC₆H₄- $(p-MeOC_6H_4SO_2)NOSO_2C_6H_4OMe-p$ (Found: C, 47.9; H, 6.2; N, 3.5%) and 50 mg of an apparently inseparable mixture of this compound and the radical $(p-ClC_6H_4)_2NO^{\circ}$: $a_{\rm N}$ 9.5, $a_{o,p-{\rm H}}$ 1.9, $a_{m-{\rm H}}$ 0.8 G;*, m/e 251.998 6 u (${}^{12}{\rm C_{12}}{}^{1}{\rm H_{8^{-1}}}$ ³⁵Cl₂¹⁴N¹⁶O requires 251.998 3 u). Methanol eluted 30 mg of p-MeOC₆H₄SO₃H. Use of 1,4-dioxan as eluant gave as the only isolable product a material of composition $(CH_2OCH_2CH_2O)_n$, identified by accurate mass measurements on a series of ions in its mass spectrum.

(d) $Ph(p-MeC_6H_4SO_2)NOH$. In situ oxidation with $PbO_2-C_6H_6$ yielded the radical $Ph(p-MeC_6H_4SO_2)NO^{\bullet}$.

(e) $p-MeC_6H_4(p-MeC_6H_4SO_2)NOH$. No radical was detected in the *in situ* oxidation with $PbO_2-C_6H_6$: from reaction with an excess of aqueous HNO₂, the hydroxylamine was recovered unchanged.

Oxidation of N-Methylsulphonyl-N-phenylhydroxylamine.

* Throughout this paper: $1 \text{ G} = 10^{-4} \text{ T}$.

7 M. O. Forster, J. Chem. Soc., 1898, 73, 783.

L. Zechmeister and P. Rom, Annalen, 1929, 468, 117.

⁹ E. T. Strom, A. L. Bluhm, and J. Weinstein, J. Org. Chem., 1967, **32**, 3853.

¹⁰ R. Meyer and W. Sundmacher, Ber., 1899, **32**, 2112.

605

solution) were as expected: methyl chemical shifts were as follows (δ /p.p.m.): Ph(MeOC₆H₄SO₂)NOH, 2.97; ClC₆H₄- $(MeOC_6H_4SO_2)NOH$, 3.00; $Ph(MeSO_2)NOH$, 2.03; Ph-(MeSO₂)NOSO₂Me, 3.05 and 3.32.

Carbon-13 n.m.r. spectra were recorded, not only of species R¹(R²SO₂)NOH and R¹(R²SO₂)NOSO₂R² but also of p-XC₆H₄SO₂Na, (p-XC₆H₄SO₂)₂NOH, and (p-XC₆H₄SO₂)₂- $NOSO_2C_6H_4X-p$ (X = H, Me, Cl, F, or OMe), and the chemical shifts (Me₂SO solution) are recorded in Table 2. Assignments, which are to be regarded as tentative only, were based on the following considerations: (i) off-resonance decoupling distinguished the resonances due to quaternary carbon atoms from those due to C-H; (ii) the resonances of carbon bonded to chlorine were assigned by observation of their long relaxation times; (iii) in p-FC₆H₄X species, the resonances were assigned by means of ${}^{n}J(C-F)$, C¹ and C² being distinguished by off-resonance decoupling; (iv) use of the approximately additive property 11-13 of substituent effects on chemical shifts, as well as internal comparisons, enabled most other assignments to be made.

Much more important than the detailed assignments, however, is the total number of aromatic carbon resonances observed for each class of compound. Compounds of type (RSO₂)₂NOH, (RSO₂)₂NH, and (RSO₂)₃N exhibit four resonances only (as do RSO₂NH₂ and RSO₂Na), indicating that the rings are identical in these species: however, (RSO₂)₂NOSO₂R, with the exception of (PhSO₂)₂NOSO₂Ph whose spectrum contains only four resonances, exhibit up to eight resonances, indicating two types of aromatic ring, consistent with their formulation 3 as NNO-trisubstituted

 ¹¹ L. F. Johnson and W. C. Jankowski, 'Carbon-13 N.M.R. Spectra,' Wiley, New York, 1972.
 ¹² J. B. Stothers, 'Carbon-13 N.M.R. Spectroscopy,' Academic Press, New York, 1972.
 ¹³ C.-J. Chang, H. G. Floss, and G. E. Peck, J. Medicin. Chem., 1075 10 (1975).

^{1975, 18, 505.}

	Total number				
	of				
	aromatic				
Compound	shifts	C1	C ² , C ³	C4	Other
PhSO ₂ NH ₂	4	144.8	126.7, 129.6	132.6	
$p-MeC_{6}H_{4}SO_{2}NH_{2}$	4	143.2	126.7, 130.0	141.8	21.3
$(p-MeC_6H_4SO_2)_2NH$	4	142.5	126.7, 129.1	139.7	21.0
$(p-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{SO}_{2})_{2}\mathrm{NH}$	4	139.8	129.6, 130.1	140.4	
$(p-MeC_6H_4SO_2)_3N$	4	142.4	127.3, 128.7	141.1	21.0
PhSO ₂ Na	4	156.0	125.9, 131.5	132.9	
p-MeC ₆ H ₄ SO ₂ Na	4	153.1	125.8, 131.9	143.3	22.9
p-ClC ₆ H ₄ SO ₂ Na	4	154.4	127.8, 131.6	129.7	
p-FC ₆ H ₄ SO ₂ Na	4	130.6 ª	128.4, ^b 118.5 °	149.4 ^d	
p-MeOC ₆ H ₄ SO ₂ Na	4	157.8	116.8, 130.0	127.9	57.0
(PhSO ₂) ₂ NOH	4	140.0	128.6, 129.1	134.6	
$(p-MeC_6H_4SO_2)_2NOH$	4	138.9	128.3, 128.7	144.8	21.2
(p-ClC ₆ H ₄ SO ₂) ₂ NOH	4	133.1	127.7, 129.3	140.2	
(p-FC ₆ H ₄ SO ₂) ₂ NOH	4	132.8 °	128.1, ^f 114.7 ¢	162.3 *	
$(p-MeOC_6H_4SO_2)_2NOH$	4	163.9	114.2, 131.1	127.2	55.8
(PhSO ₂) ₂ NOSO ₂ Ph	4	(125.7, 128.1, 129.3, 147.3)		
(A-MeC H SO) NOSO C H Mero	7	138.0	∫128.1, 129.1	∫145.1∖	{20.7}
(p-mee ₆ 114502/21050206114me-p	•	100.0	l129.8, 129.9	Լ146.0∫	ĺ21.1∫
(A-CIC H SO) NOSO C H CLA	Q	∫130.2∖	<i>∫</i> 127.5, 127.8 <i>∖</i>	∫146.9∖	
$(p - C_{6} + 1_{4} + 5) + 2_{2} + (c_{5} + c_{2} + c_{6} + 1_{4} + c_{5} + c_{6} + c$	0	131.2	l129.0, 129.8∫	∖154.4∫	
(A EC H SO) NOSO C H E A	7	∫129.8∖	$\int 128.0 i \int 114.5 i \int$	166 7 n	
$(p - 1 C_6 1 I_4 S O_2)_2 (0 S O_2 C_6 1 I_4 I - p)$,	\133.6∫	$132.2 \ k $ $116.6 \ m$	100.7 "	
$(p-MeOC_6H_4SO_2)_2NOSO_2C_6H_4OMe-p$	6	163.9	∫112.8, 114.2	195.0	∫55.2∖
			127.1, 131.1	120.9	155.9∫
PhNHOH	4	152.2	113.4, 128.7	119.8	
Ph/PhSO INOH	9	∫132.6∖	$\{122.6, 128.1\}$	∫126.9∖	
1 11(1 11302/14011	0	142.6	128.6, 129.1 ∫	ો 133.9 ∫	
Dh/A Mac U SO INOU	5	∫139.3∖	1950 1990	144.1	01.0
$Fil(p-MeO_6II_4SO_2)$ NOII	0	∖154.6∫	120.9, 128.9	144.1	21.2
		(132.7)	(122.0, 126.0)	(124.5)	
Ph(PhSO ₂)NOSO ₂ Ph	12	$\{140.2\}$	$\{126.6, 128.1\}$	$\{127.3\}$	
·		(142.1)	129.1, 129.6	134.9	
DIS (O) OEt	4	144.0	105 0 100 1	199.1	∫15.6)
Ph5(0)0Et	4	144.9	125.2, 129.1	132.1	〔61.2 ∫
DECO Et	4	100 6	100 0 100 0	100 7	[18.1]
riisO ₂ Et	4	133.0	128.2, 129.3	133.7	ો50.6 ∫

TABLE 2 Carbon-13 chemical shifts (δ/p.p.m.)

 ${}^{a} {}^{4} J(\mathrm{CF}) \ 9.4 \ \mathrm{Hz}. \ {}^{b} {}^{3} J(\mathrm{CF}) \ 8.9 \ \mathrm{Hz}. \ {}^{c} {}^{2} J(\mathrm{CF}) \ 22.2 \ \mathrm{Hz}. \ {}^{d} {}^{1} J(\mathrm{CF}) \ 240.1 \ \mathrm{Hz}. \ {}^{c} {}^{4} J(\mathrm{CF}) \ 10.6 \ \mathrm{Hz}. \ {}^{f} {}^{3} J(\mathrm{CF}) \ 8.5 \ \mathrm{Hz}. \ {}^{e} {}^{2} J(\mathrm{CF}) \ 21.7 \ \mathrm{Hz}. \ {}^{h} {}^{1} J(\mathrm{CF}) \ 245.1 \ \mathrm{Hz}. \ {}^{i} {}^{3} J(\mathrm{CF}) \ 8.3 \ \mathrm{Hz}. \ {}^{k} {}^{3} J(\mathrm{CF}) \ 10.3 \ \mathrm{Hz}. \ {}^{i} {}^{2} J(\mathrm{CF}) \ 21.5 \ \mathrm{Hz}. \ {}^{m} {}^{2} J(\mathrm{CF}) \ 23.7 \ \mathrm{Hz}. \ {}^{n} {}^{1} J(\mathrm{CF}) \ 255.3 \ \mathrm{Hz}. \ {}^{h} {}^{2} J(\mathrm{CF}) \ 21.5 \ \mathrm{Hz}. \ {}^{m} {}^{2} J(\mathrm{CF}) \ 23.7 \ \mathrm{Hz}. \ {}^{n} {}^{1} J(\mathrm{CF}) \ 255.3 \ \mathrm{Hz}. \ {}^{m} {}^{2} J(\mathrm{CF}) \ 21.5 \ \mathrm{Hz}. \ {}^{m} {}^{2} J(\mathrm{CF}) \ 23.7 \ \mathrm{Hz}. \ {}^{n} {}^{1} J(\mathrm{CF}) \ 255.3 \ \mathrm{Hz}. \ {}^{n} {}^{2} J(\mathrm{CF}) \ 21.5 \ \mathrm{Hz}. \ {}^{m} {}^{2} J(\mathrm{CF}) \ 23.7 \ \mathrm{Hz}. \ {}^{n} {}^{1} J(\mathrm{CF}) \ 255.3 \ \mathrm{Hz}. \ {}^{n} {}^{n} J(\mathrm{CF}) \ 21.5 \ \mathrm{Hz}. \ {}^{n} {}^{2} J(\mathrm{CF}) \ 23.7 \ \mathrm{Hz}. \ {}^{n} {}^{n} J(\mathrm{CF}) \ 255.3 \ \mathrm{Hz}. \ {}^{n} {}^{n} J(\mathrm{CF}) \ 21.5 \ \mathrm{Hz}. \ {}^{n} {}^{n} {}^{2} J(\mathrm{CF}) \ 23.7 \ \mathrm{Hz}. \ {}^{n} J(\mathrm{CF}) \ 255.3 \ \mathrm{Hz}. \ {}^{n} J(\mathrm{CF}) \ 255.3 \ \mathrm{Lz} \ {}^{n} J(\mathrm{CF}) \$

hydroxylamines rather than as amine oxides $(RSO_2)_3NO$: two CH_3 resonances (intensity ratio 2:1) were previously observed ¹ where R = p-MeOC₆H₄, but not p-MeC₆H₄, and two ¹⁹F resonances (ratio 2:1) were found ¹ when R = p-FC₆H₄, consistent with the ¹³C results reported here.

The compound $Ph(PhSO_2)NOH$ exhibits eight ¹³C resonances, but $Ph(PhSO_2)NOSO_2Ph$ exhibits 12, indicating that all the three rings are distinct in this compound, which is therefore also an *NNO*-trisubstituted hydroxylamine.

E.S.R. Spectra.—Apparently analytically pure samples of $R^{1}(PhSO_{2})NOSO_{2}Ph$ ($R^{1} = Ph$ or p-ClC₆H₄), despite giving sharp well resolved ¹H and ¹³C n.m.r. spectra, exhibit e.s.r. spectra in solution, having a_N of 11.5 and 11.2 G respectively, which are assignable 5 to the radicals R¹(PhSO₂)NO[•]. Similarly, samples of $(p-XC_6H_4SO_2)_2NOSO_2C_6H_4X-p$ (X = H, Me, Cl, or F, but not MeO) exhibit spectra consisting, for X = H, Me, or Cl, of simple 1 : 1 : 1 triplets; when X = F a splitting (0.6 G) due to F is also observed: these spectra are assigned to the radicals $(p-XC_6H_4SO_2)_2NO^{\circ}$. No discernable coupling of the unpaired electron with the hydrogen nuclei in an RSO₂N group was observed in any of the spectra. Table 3 lists the a values. The oxidation of Ph(MeSO₂)NOH yielded an inseparable mixture of Ph(MeSO₂)NOSO₂Me and a radical whose spectrum consisted of a broad 1:1:1 triplet, $a_{\rm N} = 12.5$ G, which we assign to Ph(MeSO₂)NO.

From the oxidation of p-ClC₆H₄(p-MeOC₆H₄SO₂)NOH, the

only radical detected is $(p\text{-ClC}_6H_4)_2\text{NO}^*$: a_N 9.5 (lit., 9.4), $a_{o,p-\text{H}}$ 1.9; $a_{m-\text{H}}$ 0.89 G. We have been unable to isolate pure

	TABLE 3			
	E.s.r. data			
(a) Radicals $(p - XC_6 H_4 SO_2)_2 NO^{\bullet}$				
Х	a _N ^a /G	Other		
н	12.0			
Me	11.0			
Cl	10.5			
F	10.5	$a_{\rm F} 0.6 {\rm G}$		
OMe	N.o. ^b			
(b) Radicals $R^1(R^2SO_2)NO^*$				
\mathbb{R}^{1}	\mathbf{R}^2	$a_{\rm N}/{ m G}$		
\mathbf{Ph}	\mathbf{Ph}	11.5		
\mathbf{Ph}	$p-MeC_{6}H_{4}$	12.2		
p-ClC ₆ H ₄	Ph	11.2		
Ph	${ m Me}$	12.5		

^a a values are believed to be correct to within ± 0.1 G. ^b n.o. = Not observed.

samples of this radical, even though it appears to be formed in substantial yield (>10%) in the oxidation of p-ClC₆H₄-(p-MeOC₆H₄)NOH: its decomposition path has been described.¹⁴

¹⁴ K. Tokumaru, H. Sakuragi, and O. Simomura, *Tetrahedron Letters*, 1964, 3945.

Infrared Spectra.—The compounds $R^1(R^2SO_2)NOH$ and $R^1(R^2SO_2)NOSO_2R^2$ all contain a band at *ca.* 1 080 cm⁻¹ assignable ³ to v(N-O); $R^1(R^2SO_2)NOH$ all contain v(O-H) and $R^1(R^2SO_2)NOSO_2R^2$ all contain v(S-O). These diagnostic frequencies (Table 4) support the formulations of $R^1(R^2SO_2)NOH$ as NN- (rather than NO-) disubstituted hydroxylamines, and of $R^1(R^2SO_2)NOSO_2R^2$ as NNO-trisubstituted hydroxylamines rather than as amine oxides.

TABLE 4

Diagnostic i.r. bands (cm⁻¹) for $R^1(R^2SO_2)NOH [\nu(O-H)]$ and $R^1(R^2SO_2)NOSO_2R^2 [\nu(S-O)]$

	(2 L·()	-
R1	\mathbb{R}^2	ν(O-H)	ν(SO)
\mathbf{Ph}	\mathbf{Ph}	3 380	820
p-ClC ₆ H ₄	\mathbf{Ph}	$3\ 375$	830
p-ClC ₆ H ₄	p-MeOC ₆ H ₄	$3 \ 302$	825
Ph	Me	$3 \ 310$	850

RESULTS AND DISCUSSION

The hydroxylamine $Ph(PhSO_2)NOH$ is oxidised by $PbO_2-C_6H_6$ and $Pb[O_2CMe]_4-CH_2Cl_2$ to yield $Ph(PhSO_2)-NOSO_2Ph$ and a mixture of nitrobenzene and azoxybenzene. As with the oxidation ³ of $(RSO_2)_2NOH$ to yield $(RSO_2)_2NOSO_2R$ and nitrate, two routes to the products are plausible (Scheme). Route (a), which

involves a redistribution equilibrium, may be eliminated by the observation that although aqueous HNO_2 will oxidise RNHOH to a mixture of RNO_2 and RNN(O)R $(R = Ph \text{ or } p\text{-}ClC_6H_4)$, it does not oxidise $Ph(PhSO_2)\text{-}NOH$ to $Ph(PhSO_2)NOSO_2Ph$, but merely nitrosates the *N*-phenyl ring to yield $p\text{-}ONC_6H_4(PhSO_2)NOH$: when the 4-position of this ring is blocked, as by Cl or Me, the hydroxylamine $R^1(R^2SO_2)NOH$ is recovered unchanged.

Corroborative evidence for route (b) is obtained by the observation, when $R^1 = R^2 = Ph$, that apparently pure samples of Ph(PhSO₂)NOSO₂Ph are contaminated with small quantities of the radical Ph(PhSO₂)NO[•]. This radical has been previously detected by Wajer *et al.*,⁵ who only investigated the paramagnetic product of the oxidation of Ph(PhSO₂)NOH. Balaban and

¹⁵ A. T. Balaban and N. Negoita, *Rev. Roumaine Chem.*, 1972, 17, 227.

Negoita ¹⁵ have also studied the paramagnetic product of the oxidation of this hydroxylamine and they report that in dioxan the spectrum of Ph(PhSO₂)NO lasts for only a few minutes, and is quickly replaced by that of PhN(NO)O[•], and then more slowly by that of Ph₂NO[•]. In contrast, we observe identical spectra from isolated samples of Ph(PhSO₂)NOSO₂Ph (oxidation time 24 h) and from in situ oxidation of Ph(PhSO₂)NOH: furthermore, the mechanistic scheme postulated by Balaban and Negoita requires formation of Ph₂SO₂ which we do not find, but not of PhNO₂ or PhNN(O)Ph both of which we isolate. Although their reaction was reported to be conducted in 1,4-dioxan, we have found that this solvent is polymerised by aminyl oxides (see Experimental section). Similarly, we find that apparently analytically pure samples of p-ClC₆H₄(PhSO₂)NOSO₂Ph contain the radical p-ClC₆H₄(PhSO₂)NO[•]: the identical radical is obtained by in situ oxidation of p-ClC₆H₄(PhSO₂)NOH, again in disagreement with Balaban and Negoita.

However, when $R^1 = p$ -ClC₆H₄ and $R^2 = p$ -MeOC₆H₄, the only radical detected was (p-ClC₆H₄)₂NO[•], but again no sulphones were observed, so that the scheme of Balaban and Negoita cannot be confirmed: nevertheless, the formation of this radical is most unexpected.

The observation of radicals $(RSO_2)_2NO^2$ in apparently pure samples of $(RSO_2)_2NOSO_2R$ supports the analogous route (b) suggested ³ for the oxidation of $(RSO_2)_2NOH$, as it seems extremely unlikely that $(RSO_2)_2NOSO_2R$ could undergo spontaneous homolysis in solution.

The compounds $R^1(R^2SO_2)NOSO_2R^2$ all contain a band in their i.r. spectra assignable to v(S-O) which supports their formulation as NNO-trisubstituted hydroxylamines. This formulation is further supported by n.m.r. spectroscopy in the cases of Ph(MeSO₂)-NOSO₂Me, which exhibits two distinct methyl resonances (δ 3.05 and 3.32 p.p.m.) in its ¹H spectrum, and of Ph(PhSO₂)NOSO₂Ph which exhibits 12 aromatic resonances in its ¹³C spectrum (Table 2); Ph(PhSO₂)NOH in contrast exhibits only eight such resonances as would the amine oxide Ph(PhSO₂)₂NO. Similar support for the *NNO*-trisubstituted hydroxylamine constitutions of compounds (RSO₂)₂NOSO₂R is derived from their ¹³C n.m.r. spectra (see Table 2 and Experimental section).

Similar to the hydroxylamines $R^1(R^2SO_2)NOH$ is the compound Ph(PhCO)NOH, oxidation of which yields Ph(PhCO)NOCOPh, analogous to $R^1(R^2SO_2)NOSO_2R^2$, and also PhCONHPh, in addition to the usual PhNO₂ and PhNN(O)Ph. Our observations confirm those of Forrester,¹⁶ including the isolation of the unexpected PhCONHPh. An apparently pure sample of Ph-(PhCO)NOCOPh exhibited an e.s.r. spectrum identical to that of the known ¹⁷ radical Ph(PhCO)NO⁶; this supports a scheme analogous to that proposed for the oxidation of the sulphonylhydroxylamines.

[7/1647 Received, 19th September, 1977]

¹⁶ A. R. Forrester, Ph.D. Thesis, Aberdeen University, cited in ref. 2.
 ¹⁷ H. G. Aurich and F. Baer, *Tetrahedron Letters*, 1965, 3879.